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Abstract

The generation of phase space events in high energy particle physics is commonly done using a

Metropolis-Hasting unweighting algorithm with fixed proposal distribution. The multi-channel

Markov chain Monte Carlo algorithm (MC3) introduced in [1] proposes a mixing of the fixed

proposal method with a local Metropolis update. Based on this framework, the feasibility

and performance improvement of using Hamiltonian (Hybrid) Monte Carlo (HMC) is analyzed.

Performance is measured based on the number of target density evaluations and the introduced

autocorrelation between events. Based on the analysis of a toy problem, the combined HMC-

MC3 is found to improve on the sample convergence behavior of the fixed target proposal and

reduces the autocorrelation of the local HMC method for strongly peaked distributions. While

the overall approach seems promising, various parameters must be tuned for individual target

distributions to obtain optimal performance.
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1. Introduction

The physics of high energy particle collisions is fundamentally described by a matrix element

M, a function of the initial and final state four-momenta of the particles, which is proportional

to the transition amplitude. Generally, one is interested in finding an expectation value 〈O〉 of

some observable with respect to this process, given by a 3n− 4 dimensional [2] integral (where

n is the number of final state particles, n ≥ 2) of the form

〈O〉 =

∫
dpO(p)f(p)∫

dp f(p)
, (1.1)

where f ∝ |M|2 is the differential cross section. Because of the relatively high dimensionality it

is natural to turn to Monte Carlo integration, for which the convergence behavior is independent

of the dimension [3]. Furthermore, using importance sampling introduced in section 2.4, Monte

Carlo integration can be extended to better handle strongly peaked integrands as are common

in this field. The model of the physical process is split into three regimes of momentum-

transfer (referred to as factorization), which are simulated individually: a first phase of few,

high energetic partons, parton showering (commonly simulated via empirical models), and a

final hadronization into observable particles [2]. Subject of this report is the first regime, for

which a perturbative hard matrix element M can be algebraically derived by a computer. In

general, to make predictions about physical observations in a detector, the three fundamental

phases of simulation are followed by a detector simulation.

The objective of the first simulation phase is to compute the total cross section σ =
∫

dp f(p)

and generate samples (points in phase space corresponding to, and sometimes referred to as,

events) distributed according to f . Each generated point in phase space may generally have

a corresponding weight such that the expectation value 〈O〉 is approximated by the weighted

mean of O evaluated at the sample points (see section 2 on Monte Carlo integration). If

the weights for all sample points are equal, the sample is said to be unweighted (i.e. the

sample contains unweighted events). The samples generated in the first phase are propagated

in the following two phases using phenomenological models [2], and finally input to a detector

simulation. Since the detector simulation is generally computationally expensive, it is desirable

to generate unweighted events. Furthermore, for the sample to be treatable as a substitute for

experimental data it has to be unweighted, and must not display significant correlation between

sample points. This is measured by the lag-autocorrelation defined in eq. (3.6). Since the

matrix element is computationally expensive to evaluate, the number of function evaluations of

f can be used as a heuristic for the computational cost of an algorithm.
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1. Introduction

In summary, the goal is to generate an unweighted phase space sample according to f with

minimal lag-autocorrelation, while minimizing the number of function evaluations. This sample

can be propagated using methods mentioned above, and can be used to compute 〈O〉 for any

observable of interest.

Given the constraints of unweighted and close to uncorrelated events, the established approach

is to use Monte Carlo methods such as a Metropolis-Hasting Markov chain (section 3.2) with a

fixed, global proposal distribution. While this approach ensures unweighted and uncorrelated

events (apart from repetitions inherent to the algorithm; each next sample point is proposed

independently of the previous one), distributions f with significant local peaks can lead to slow

convergence to the target distribution. To avoid repetition of events in the final sample (and to

counteract potentially slow convergence of the Markov chain), only every nth sample point may

be chosen as final event (this practice is referred to as subsampling [4]), effectively requiring

multiple function evaluations per event. By using a local proposal mechanism the acceptance

rate of the Markov chain update can be increased. However, the emergent random-walk behavior

introduces significant correlation between sample points, and low-probability areas may not be

crossed, leading to “undiscovered” and therefore underrepresented features of the distribution

(in the limit the target distribution is reached but the convergence may be arbitrarily slow). The

Multi-channel Markov chain Monte Carlo (MC3) algorithm introduced in [1] (section 3.4) aims

to mitigate this problem by combining a local Metropolis update (producing autocorrelated

sample points) with a global update in analogy to acceptance-rejection sampling (section 3.1).

Local “explorations” of the distribution are interrupted by global, random jumps in phase space

that reduce the correlation and prevent the missing of features.

There are several variants of Metropolis methods, developed in other fields, that improve on

the random walk behavior of a naive, symmetric, local update, using (local) information about

the distribution (for example [5], [6], and [7]). After an overview of Monte Carlo integration

and the basic sampling methods in sections 2 and 3, improvements on the basic MC3 algorithm

by using Hamilton Monte Carlo (HMC) [8] as local update are examined. It is shown that

using the MC3 algorithm in combination with HMC can significantly improve the sampling

efficiency, but introduces the challenges of choosing good parameter values and having to deal

with boundary conditions for certain distributions. Both of these issues, however, have known

solutions such as the No-U-Turn sampler [6] and Sphercial HMC [9] which are variants of the

HMC algorithm. Finally, the improved version of MC3 is demonstrated on a simple differential

cross section obtained via Sherpa [10].

Besides Sherpa all Monte Carlo methods are implemented, specifically for this examination, in

Python and available at https://github.com/mathisgerdes/hep-monte-carlo/releases/

tag/v1.1.
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2. Monte Carlo Integration

Monte Carlo integration approximates an integral over a volume V by sampling the integrand

at N (pseudo-) randomly selected points xi ∈ V . In the simplest form of Monte Carlo inte-

gration (without any variance reducing techniques) the xi are selected according to a uniform

distribution in V , thus reducing the integral to an average:

I =

∫
dx f(x) ≈ EN =

V

N

N∑
n=1

f(xn). (2.1)

For N function evaluations, the statistical variance of the estimate E is [3]

σ2(E) =

∫
V

dx1· · · dxN
(
EN (x1, . . . , xN )− I

)2
=
σ2(f)

N
, (2.2)

where

σ2(f) =

∫
V

(f − I)2 (2.3)

is the variance of f on V . The Monte Carlo estimate of σ2(f) is

σ2(f) ≈ S2(f) =
V

N

N∑
n=1

f(xn)2 − E2. (2.4)

2.1. Statistical Distribution of Estimates

The central limit theorem implies that Monte Carlo estimates follow a normal distribution with

variance according to eq. (2.2) and in the limit N → ∞ the estimate E converges to the true

value I [3]. It must be noted, however, that the above analytical results only hold if f is square-

integrable. While in the limit the estimate for a none square-integrable integrand still converges

to the true value, the error prediction is not reliable.

Fig. 2.1 shows the distribution of 2000 integration estimates for a square-integrable and a none

square-integrable function

f(x, y) = (xy)−1/2 and f(x, y) = sin(2πx) · sin(2πy) (2.5)

respectively, over the unit cube [0, 1]2 with the fixed number N = 5000 of function evalua-

3



2. Monte Carlo Integration

tions each run. In comparison, the normal distributions with variances according to eq. (2.2)

(specifically the mean of such predictions over all runs) are shown. The distribution of the

square-integrable integrand can be seen to closely resemble the normal distribution as predicted

by the central limit theorem. The histogram for the none square-integrable function shows

significant outliers and appears to be asymmetric.

A quantitative measure of how well the distributions match the predictions is given by a bin-

wise χ2 test, introduced in more detail in section 3.3.2, comparing the number of points in each

bin to the predicted number of points according to the normal distribution. For M bins, the

χ2 statistic (eq. (3.7)) follows a χ2 distribution with M − 1 degrees of freedom (dof), if the the

sample follows the expected (here normal) distribution. The mean of χ2/dof is 1.

Using the bins as shown in fig. 2.1 (M = 160) it is χ2/(M − 1) = 0.9664 for the square-

integrable and χ2/(M−1) = 1.123×1015 for the none square-integrable function. This matches

the observation that the central limit theorem predictions for the distribution only apply to

square-integrable functions.
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Figure 2.1.: Normalized histograms of 2000 runs of ordinary Monte Carlo integration with
N = 5000 function evaluations each run, for the square-integrable (left) and and
none square-integrable function (right) in eq. (2.5), and normal distributions with
predicted variances.

2.2. Scaling of the Standard Deviation

The variance of Monte Carlo estimates in eq. (2.2) presents a central feature of Monte Carlo

integration. Independently of the dimensionality, the standard deviation of the integration

estimate scales like the inverse square root of function evaluationsN , σE = O(1/
√
N). While the

independence of the dimensionality is the strength of Monte Carlo integration, convergence with

the inverse square root of N is slow compared to other integration methods. Using information

about the integrand, there are variance reducing techniques that decrease the variance by a

constant prefactor. Adaptive techniques are designed to learn about the integrand and decrease

the prefactor during the integration process by adapting internal parameters.

4



2.3. Importance Sampling

Variance reducing techniques include stratified sampling, control and antithetic variates [3],

and importance sampling (section 2.3). Common adaptive Monte Carlo techniques are the

VEGAS-algorithm [11] and Multi-Channel Monte Carlo (section 2.4).

2.3. Importance Sampling

Importance sampling replaces the uniform distribution in plain Monte Carlo with a custom,

fixed distribution, also referred to as proposal distribution or mapping (especially in the context

of sampling methods). This can significantly improve the integration if the function is strongly

peaked and information about the approximate location and shape of the peaks are known. The

importance sampling method is mathematically based on a transformation of coordinates:∫
V

dx f(x) =

∫
V

f(x)

p(x)
p(x) dx =

∫
V

f(x)

p(x)
dP (x). (2.6)

The function p(x) can be interpreted as probability distribution if p(x) ≥ 0 and
∫
V p(x) = 1.

Given a method of selecting points xn according to this distribution, the importance sampling

Monte Carlo estimate becomes

E =
1

N

N∑
n=1

f(xn)

p(xn)
. (2.7)

The variance of this estimate is given by [3]

σ2(E) =
1

N

∫
dx p(x)

(
f(x)

p(x)
− I
)2

=
σ2(f/p)

N
, (2.8)

with the sample estimate for the integrand variance

S2(f/p) =
1

N

N∑
n=1

(
f(xn)

p(xn)

)2

− E2. (2.9)

A good choice of mapping p closely resembles f , thus reducing the integrand variance. The

optimal choice would be p(x) ∝ f(x), for which the variance becomes zero (in this case the

problem would already be analytically solved, however).

2.3.1. The Camel Distribution

The Camel distribution [11], consisting of two spatially separated Gaussian peaks, will serve as

a toy problem for a target distribution (i.e. integrand) f . The probability density is defined as
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2. Monte Carlo Integration

the superposition of two Gaussian distributions

fcamel(x) =
1

2

exp

(
−1

2
zᵀΣ−1

1 z

)∣∣∣∣∣
z=x−µ1

+ exp

(
−1

2
zᵀΣ−1

2 z

)∣∣∣∣∣
z=x−µ2

 (2.10)

with the default values

Σ1 = Σ2 = σ21 =
0.12

2
1; µ1 =

(
1

3
,
1

3
, . . .

)ᵀ

, µ2 =

(
2

3
,
2

3
, . . .

)ᵀ

(2.11)

for the covariance matrices and the means in any number of dimensions (here, the one and two

dimensional versions will be used).

The HMC method introduced in section 4.1 requires the gradient of the potential defined as

V (x) = − log f(x). For the Camel distribution the potential gradient is

∇Vcamel(x) = −∇fcamel(x)

fcamel(x)
, (2.12)

where the gradient of the Camel distribution is given by

−2∇fcamel(x) = Σ−1
1 z · exp

(
−1

2
zᵀΣ−1

1 z

)∣∣∣∣∣
z=x−µ1

+ Σ−1
2 z · exp

(
−1

2
zᵀΣ−1

2 z

)∣∣∣∣∣
z=x−µ2

. (2.13)

2.3.2. Effects of Different Probability Distributions

For analyzing the behavior of sampling and integration methods discussed here, the continuous,

square-integrable camel distribution fcamel of eq. (2.10) with the parameters as in eq. (2.11) is

considered (in one dimension).

Fig. 2.2 shows the deviation of importance sampling integration estimates from the exact value

over a range of sample sizes on a log-log plot, using two different probability distributions,

and plain Monte Carlo (which is equivalent to a uniform distribution over the whole volume).

The root-mean-square deviations are obtained from 50 executions of the integration methods

for each number of function evaluations. In the log-log plot, a scaling of σE = c · Nm for the

standard deviations would show as a straight line with slope m, shifted up by c. According to

eq. (2.8) the power is expected to be m = −1/2.

The first distribution pimp is a Camel distribution with parameters slightly altered from the

default parameters (here denoted as parameters without superscript; using the exact default

parameters would make the distribution optimal):

µimp
1 = 0.9µ1, µimp

2 = µ2; Σimp
1 = Σ1, Σimp

2 =
√

1.1Σ2. (2.14)

The first peak of this distribution is translated, the second peak is enlarged by 10 % relative

to the integrand. The second distribution pvar is, up to a normalization factor, chosen in

6



2.3. Importance Sampling

correspondence with the expression for the variance of a function, eq. (2.3):

pvar(x) ∝
(
f(x)− 1

)2
, (2.15)

with f = fcamel being the integrand (a Camel distribution with standard parameter values).

The plot shows the root-mean-square deviations of the estimates from the exact value, obtained

from 50 executions of the method for each number of function evaluations. The predicted

standard deviation shown is the square root of the mean of predicted variances, over the same

number of executions.

This example illustrates the importance of minimizing the variance of f/p in choosing p. The

distribution pvar emphasizes regions of f with high variance and does not closely resemble

f , which leads to even worse results than a uniform distribution (plain Monte Carlo). The

imperfect mapping pimp proves best, as it most closely resembles the integrand. The plot also

demonstrates that importance sampling only decreases the variance by a factor, but does not

change the overall N−1/2 scaling (the slope is approximately equal for all distributions), as

noted earlier.

The predicted and actual deviations for the pcov distribution are scattered significantly because

the effective integrand f/pcov goes to infinity close to the roots of pcov, where f is nonzero. For

further analysis it may be insightful to study the distribution of (predicted) variances for Monte

Carlo techniques, since the variance estimates should not be subject to as broad a distribution

as the estimates themselves. If they were, the predicted variance for a single execution could

not be taken as a reliable measure of the estimate’s quality.
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0
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Integrand
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predicted (MC plain)
RMS deviations

Figure 2.2.: Log-log plot (right) of the RMS deviation over 50 executions of importance sam-
pling Monte Carlo integration of the camel distribution (top left, eq. (2.10)), using
different probability distributions (bottom left, eq. (2.14), (2.15)). The linear (in
log-log coordinates) fit was done on the actual RMS deviations.
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2. Monte Carlo Integration

2.3.3. Generating Samples for Monte Carlo Integration

Importance sampling requires a method to generate a sample according to a probability distri-

bution p. While there are several algorithms (see section 3) for generating samples according

to an arbitrary distribution (which will later be employed to generated unweighted events ac-

cording to f), these methods are generally expensive. For the application relevant here, the

distribution(s) for importance (and multi-channel) Monte Carlo p will be chosen according to

limited information about the integrand such as approximate positions and sizes of peaks. It is

therefore reasonable to limit the choice of p to distributions for which there is a known inverse

and the inverse transform method is applicable, or for which special sampling methods exist.

The inverse transform method. In one dimension the probability distribution function p(x)

has a corresponding cumulative distribution function P (x) mapping onto [0, 1]. If the inverse of

P is known, samples can be generated by using common pseudo-random number generators to

choose values u ∈ [0, 1] and then compute x = P−1(u), which will have the desired distribution.

2.4. Multi-Channel Importance Sampling Monte Carlo

Multi-channel Monte Carlo is an adaptive Monte Carlo integration technique based on impor-

tance sampling. Instead of one probability distribution, the multi-channel technique comprises

a set of distributions pk (called channels) with respective weights αk. For each step, a channel

is chosen randomly with probability αk, and xi is (pseudo-) randomly selected according to the

chosen channel. The integration process is split into iterations with Nj function evaluations in

each, such that after one iteration the channel weights can be updated to minimize the variance

of f/p, where p(x) =
∑m

k=1 αkpk(x) is the overall or total probability distribution. For each

iteration define

Wj,k(α) =

∫
V

dx pk(x)

(
f(x)

p(x)

)2

≈ V

Nj

Nj∑
i=1

(
f(xi)

p(xi

)
, (2.16)

Wj(α) =

∫
V

dx p(x)

(
f(x)

p(x)

)2

≈
m∑
k=1

αkWj,k, (2.17)

where the right sides are the Monte Carlo estimates. Wj,k can be understood as the contribution

of channel j to the total variance of the integrand. To reduce the variance, channels that

contribute disproportionately much should have a larger weight. The channels are updated

according to [12][3]

αnewk =
αk(Wj,k(α))β∑
k αk(Wj,k(α))β

, (2.18)

8



2.4. Multi-Channel Importance Sampling Monte Carlo

with β ranging from 1/2 to 1/4. Analogous to importance sampling the integration estimate

for one iteration is [3]

Ej =
V

Nj

Nj∑
i=1

f(xi)

p(xi)
, (2.19)

σ2
Ej

=
Wj(α)− I2

N
. (2.20)

Since the estimate is independent of the channel weights, the estimates from all iterations can

be combined into a total estimate:

E =
1

N

∑
j

NjEj , (2.21)

σ2(E) =

∑
j
Nj
N Wj − I2

N
, (2.22)

where N =
∑

j Nj . Depending on the problem it might be useful to have an initial phase of

weight optimization that does not contribute to the total estimate, or an additional final phase

in which the weights are not updated.

2.4.1. Channel Weight Optimization Process

The multi-channel optimization algorithm is most useful, if the relative heights or positions of

peaked areas of the integrand are not or only partially known.

Returning again to the Camel distribution from section 2.3.1 the case of unknown positions of

the peaks can be explored. Assuming the exact locations of the peaks are unknown, and the

peak structure is known to be Gaussian, the problem can be approached by selecting multiple

Gaussian distributions as channels, with randomly chosen centers in the vicinity of the peaks.

By adapting the channel weights, the integration method will increase the weight of channels

close to the peaks and decrease weights of channels that barely contribute.

Fig. 2.3 shows the deviations of multi-channel integration estimates using as channels 15 Gaus-

sian distributions with centers randomly chosen over the integration space, where each data

point is obtained over 20 executions. The algorithm is set to do 1000 evaluations in each itera-

tion and update the weights in each. For comparison, the standard deviations of a plain Monte

Carlo integration are shown.

The standard deviations for the multi-channel variant is larger than for the plain Monte Carlo

integration, for small number of integration steps N . This corresponds to the fact that the initial

combined probability distribution, as visible from the right plot, approximates the integrand

even worse than a uniform distribution (the initial distribution is close to minimal for the left

peak). For total sample sizes approximately 103 < N < 104 the convergence of multi-channel

Monte Carlo is faster than O(
√

1/N), but levels off for N > 104 and eventually assumes a

9
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0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5
Initial pdf
After 105 evaluations
integrand

102 103 104 105

N

10 3

10 2

10 1
predicted (MC Multi C.)
RMS deviations
predicted (MC Plain)
RMS deviations

Figure 2.3.: Log-log plot (left) of deviations for multi-channel (using β = 0.5) and plain Monte
Carlo integration of the one-dimensional Camel distribution in eq. (2.10) with
parameters as in eq. (2.11). Each iteration comprises 1000 samples, each data
point is the mean over 20 executions. On the right are the initial and final overall
probability distributions. The channels are Gaussian distributions with variance
σ2 = 0.005 (the same as one of the peaks in the Camel distribution) and centers
randomly chosen within [0, 1].

O(
√

1/N) behavior. This corresponds to the ideal channel weights being found and multi-

channel sampling effectively becoming importance sampling, which converges by a constant

factor faster than plain Monte Carlo.
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3. Generating Samples According to Arbitrary

Distributions

The cheapest and thus preferred method for sampling according to non-uniform distributions is

the inverse transform method. It is, however, only applicable if the inverse of the distribution

is known, which is not generally the case. Since the goal is to generate unweighted samples

according to a function f related to the matrix element about which (generally) little is known,

other methods must be used.

In the following two sampling methods are introduced that generate unweighted events: the

acceptance-rejection method and Markov chains (specifically the Metropolis Hasting algorithm).

Neither method requires the probability distribution function they sample to be normalized. The

MC3 algorithm in section 3.4 provides a framework to take advantage of a local Markov chain

while reducing correlation using the multi-channel configuration (from section 2.4) in analogy

to the proposal in the acceptance-rejection method.

3.1. Acceptance-Rejection Sampling

Acceptance-Rejection sampling generates unweighted samples according to an (unnormalized)

distribution f(x) using a distribution p(x) for which a sampling method is known. A constant

C must be known such that f(x) ≤ Cp(x) everywhere.

Samples generated according to p(x) would have an inherent weight of f(x)/p(x). They can be

unweighted by only accepting a chosen sample value x with a probability f(x)/(Cp(x)). If a

sample is rejected, a new x is chosen according to p(x). These two steps are repeated until a

value is accepted. Samples generated this way will follow the desired distribution f(x) [3].

The biggest drawback of this method is that it requires detailed knowledge about the desired

distribution to be efficient. If the sampling distribution does not closely resemble the desired

distribution, many sampled values will be rejected and thrown away. The constant C must be as

small as possible for the method to be efficient, which requires knowledge of the maximal value

of f(x)/p(x). While the acceptance-rejection algorithm itself will not be further considered, as it

lacks the extensibility of Markov chains described in the following section, it is analogous to the

unweighting of proposals in the Metropolis importance sampling update of the MC3 algorithm

in section 3.4.
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3. Generating Samples According to Arbitrary Distributions

3.2. Markov Chains

A Markov Chain is a sequence of elements x1, x2, ... where the distribution of xk+1 only de-

pends on the previous element xk. This conditional distribution P (xk+1|xk) is called transition

probability distribution. The distribution of x1 is called initial distribution. A distribution h

that is preserved under the conditional distribution of the Markov chain, P (x|y)h(y) = h(x), is

called its stationary distribution.

A Markov Chain is said to be stationary if the marginal distribution of xn does not depend on

n. It is time-homogeneous if P (xk+1|xk) does not depend on k. A time-homogeneous Markov

Chain has a unique stationary distribution [1]. If the Markov Chain is ergodic (every state

can be reached within a finite number of steps) and the transition probability satisfies detailed

balance with respect to the stationary distribution f ,

f(x1)P (x2|x1) = f(x2)P (x1|x2), (3.1)

the Markov Chain converges to the stationary distribution (equilibrium distribution) for any

initial distribution [3][4].

To generate a sample according to a given distribution, a Markov Chain with this distribution

as equilibrium distribution has to be constructed. To assure the Markov Chain converges, it is

easiest to show detailed balance and use time-homogeneous transitions. A common method is

the Metropolis-Hasting algorithm, of which the Metropolis algorithm is a special case.

3.2.1. Metropolis-Hasting Algorithm

The Metropolis-Hasting algorithm defines an update mechanism for generating a Markov Chain

with a given desired (target) equilibrium distribution f . It requires a sampling method that pro-

poses a new state xk+1 with a known conditional probability (proposal distribution) q(xk+1|xk),
and the initial value of the Markov chain.

To generate the next value xk+1 in the Markov Chain given xk, a candidate y is chosen from

the proposal distribution. The candidate is accepted with the acceptance probability

α(y|xk) = min

(
1,

f(y)q(xk|y)

f(xk)q(y|xk)

)
, (3.2)

otherwise the next value is xk+1 = xk. The chain generated this way can be shown to be ergodic

and fulfill detailed balance, and thus converges to the desired equilibrium distribution f [4].
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3.3. Analyzing Generated Samples

Metropolis Update. If the proposal distribution is symmetric, q(x|y) = q(y|x), the acceptance

probability simplifies to

min

(
1,

p(y)

p(xk)

)
. (3.3)

This special case is called Metropolis update.

In the following the term local Metropolis (Hasting) update is used to describe updates for which

the proposal distribution q(x|y) is localized (explicitly dependent on the previous state y), as

opposed to a global Metropolis Hasting update for which q(x|y) = q(x). The local Metropolis

update will often have a fixed proposal distribution of the form q(x|y) = p(x − y). Similar to

the acceptance-rejection method, sample points generated using a global Metropolis Hasting

update are independent, but state repetitions are introduced when a proposal is rejected.

3.3. Analyzing Generated Samples

It is important to understand the behavior and the quality of generated samples. A basic

understanding of the sample can be provided by the sample mean x̄ and the sample variance

S2
x, which, in the limit, should converge to the mean µf and variance σ2

f of the distribution

given by f (note µf and σ2
f do not refer to the mean and variance of the function f itself;

they are values in x-space). A normalized histogram can show if the sample roughly follows

the distribution. However, especially for more complicated distributions, these methods are

unsatisfactory for a reasonable judgment of sample quality.

3.3.1. Lag-Autocorrelation

If the conditional proposal distribution used in the Metropolis-Hasting algorithm is local, the

subsequent elements of the Markov Chain tend to stay in the vicinity of each other; the se-

quence performs a kind of random walk. The lag auto-correlation measures how similar (i.e.

close) points are depending on their distance in the chain. For a high-quality sample, the lag-

autocorrelation must be minimized (this can be achieved by e.g. mixing Markov Chains or by

subsampling [4]).

The lag-k autocovariance is defined as

γk = cov(xi, xi+k), (3.4)

with the natural estimator

γ̂k =
1

N

N−k∑
i=1

(xi − x̄)(xi+k − x̄). (3.5)
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Figure 3.1.: Time series plot (left) of a Markov chain of length 1 000, sampled using a local
Metropolis update with a Gaussian distribution (σ = 0.1, µ = 0.5) as equilibrium
distribution. A normalized histogram together with the equilibrium distribution of
the sample is shown in the middle, with the autocorrelation function of the same
run shown on the right. The candidate in the Metropolis update is chosen uniformly
within an interval of length 0.015 around the previous value.

For any distribution property ξ the sample estimator is referred to as ξ̂, if the distinction is

made explicitly. The lag-k autocorrelation is the autocovariance divided by the variance:

ρk =
γk
γ0
, ρ̂k =

γ̂k
γ̂0
. (3.6)

Fig. 3.1 illustrates how a lag-autocorrelation plot can reveal poor sampling performance. A

local Metropolis update is used to generate a sample according to a Gaussian target distribution.

The proposal distribution is uniform on an interval of length 0.015 around the previous value,

leading to a local selection of points clearly visible in the random walk-like time series plot. The

lag-autocorrelation plot confirms the correlation of neighboring points (in higher dimensions

and for more complicated target distributions, it is neither feasible nor insightful to plot the

full Markov chain as done here). The lag-autocorrelation is used for the effective sample size in

section 3.3.3, which summarizes the correlation of a sample into a single measure.

3.3.2. Bin-Wise Chi Squared Test

The bin-wise χ2 statistic provides a quantitative measure for how well a given sample matches

an arbitrary target distribution. For M bins and Ni of the samples falling into bin i with a

theoretically predicted number ni of points, the χ2 value is [13]

χ2 =
M∑
i

(Ni − ni)2

ni
. (3.7)

Assuming the number of points in each bin follows a normal (Poisson for large enough ni;

σ2 = ni) distribution, the above statistic is expected to follow a χ2 distribution with M − 1

degrees of freedom (given the number of points for M − 1 bins, the number of points in the last

bin is fixed by the total sample size). If the sample follows the target distribution, the number

of bins in each bin follows a Poisson distribution. The assumption of normal distributed counts
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3.3. Analyzing Generated Samples

(required for the statistic to follow a χ2 distribution) is only valid for counts large enough such

that the Poisson distribution is close to normal. Practically, given a specific binning, all bins

containing fewer than 10 observed or predicted sample points will be ignored (M then refers to

the number of actually contributing bins).

Since the χ2 distribution for any given degrees of freedom is analytically known, the corre-

sponding p-value, denoted as p(χ2) can be given. The p-value is the significance of obtaining

a certain χ2 value assuming as null hypothesis the sample follows the target distribution. It

therefore gives the significance under which the target distribution can be rejected as describing

the sample, and can be used as measuring the quality of a sample (larger values correspond to

higher quality).

Especially for samples generated with a form of Metropolis algorithm one should be aware

of the impact of different binning choices. The Metropolis algorithm has a non-zero chance of

repeating the exact same value, which will for small bin-sizes lead to larger values of the statistic.

As long as the chosen binning is fixed, the χ2 statistic can be used to compare the quality of

different samples of the same size, where smaller values of χ2/dof imply closer resemblance to the

equilibrium distribution (more accurately, smaller values imply larger statistical compatibility).

An estimator for a reasonable binning choice used for the analysis here can be found in section

A in the appendix.

For the sample distribution in fig. 3.1 it is χ2/(M − 1) = 6.97 and p(χ2) = 1.08× 10−13 (using

16 bins out of which M = 14 are valid; the plot shows 20 bins), which confirms poor quality

due to the localized sampling.

3.3.3. Effective Sample Size

Given xi=1,...,N (generally correlated) Markov chain sample points, the effective sample size

(ESS) measures how many independent sample points would be needed to estimate the mean

µf of the target distribution f with the same variance as the Markov chain estimate using the

xi [6]:

ESSf (xi) = N
σ2
[

1
N

∑N
i=1 f(xi)

]
1
N σ2(f)

(3.8)

This can be used to describe the performance of a Markov chain-based sampler, as it gives the

number of independent sample points a correlated sample is effectively worth. Values near the

total sample size N indicate close to independent sample points, while smaller values hint at

considerable random-walk behavior. As in [6], the ESS is measured using the lag-autocorrelation

ρk of eq. (3.6) using as cutoff N cutoff the first time ρ̂k drops under a value of 0.05:

ˆESSf (xi) =
N

1 + 2
∑Ncutoff

i=1 (1− i
N )ρ̂i

; N cutoff = max{k = 1, . . . , N | ρ̂ < 0.05}. (3.9)
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3. Generating Samples According to Arbitrary Distributions

The cutoff is needed to prevent large values of the lag k for which the estimator ρ̂k inevitably

becomes noisy. To avoid underestimating the lag-autocorrelation, in its computation the sample

mean x̄ is replaced by either the known mean µf or an independent and more reliable estimate

µ̂f [6]. For multiple dimensions the calculation of the ESS can be done independently for each

dimension. To obtain a single value for the ESS of a given sample, the minimal (worst) value

is chosen.

For the sample in fig. 3.1 it is ˆESS = 5.7, which (compared to N = 5 000 sample points)

highlights the autocorrelation due to the random walk even more clearly than the bin-wise χ2

or the lag-autocorrelation plot.

3.4. Multi-Channel Markov Chain Monte Carlo

The multi-channel Markov chain Monte Carlo (MC3) method introduced in [1] combines the

classical global Metropolis-Hasting sampler using the multi-channel Monte Carlo integration

with a local Metropolis-Hasting algorithm. The basic goal is to increase the acceptance rate and

thus performance of the sampling method, while maintaining relatively low lag-autocorrelation.

In the first phase, the function f is integrated over the sample space using multi-channel Monte

Carlo. The channels used for the integration must be passed to the algorithm (and constructed

using knowledge about the function such as sizes and locations of peaks, which physically

correspond to resonances in the matrix element). As a result of the multi-channel integration

the channel weights are optimized, leading to a combined probability distribution pIS which

approximates f . The total integral of f may be of interest to users of the algorithm, but is

unimportant for the sample generation.

The sampling, which follows the integration phase, generates a Markov Chain by mixing two

Metropolis-Hasting update mechanisms (making MC3 a random scan Metropolis algorithm

[4]). The first update mechanism is chosen with probability β, and is a global Metropolis-

Hasting update with candidates proposed according to the distribution pIS from the multi-

channel integration (thus independently of the previous state in the chain). The second, chosen

with probability 1−β, is a Metropolis update that uses some local proposal distribution ploc(x|y).

In the original paper suggests using a local proposal distribution, such as a symmetric Gaussian

distribution, the width of which may be adapted to reach a certain target acceptance rate

(section 3.4.2). The combined update mechanism is reversible and has the desired equilibrium

distribution f [1].

3.4.1. Parameter Choice

The main parameter of the MC3 method is β, which sets the probability of using the importance

sampling update in the Markov chain. Since the candidates in this update mechanism follow the
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3.4. Multi-Channel Markov Chain Monte Carlo

optimized distribution pIS of the integration channels, larger values of β correspond to higher

confidence in this distribution being a good approximation of f .

Further properties of the MC3 method include the number of iterations for which to integrate

the function (and thus optimize the channels), and the size and shape of the local proposal dis-

tribution in the local update mechanism. These properties are, however, not generally referred

to as parameters as they may be adapted and chosen by the algorithm. The original paper

proposes to change the size of the local proposal distribution until an acceptance rate in the

range [0.25, 0.5] is reached (see section 3.4.2) [1].

As an example equilibrium distribution the modulated sine-squared target distribution

f(x) = sin2(2πx) · sin2(10 · 2πx) (3.10)

is considered. Fig. 3.2 shows the impact of β on the sampling of this distribution. The proposal

distribution in the second update method is fixed to a uniform distribution within an interval

of length 0.01 around the previous chain element. The distributions from fig. 2.2 were used

for the channels. The first distribution shown is of a sample generated with β = 0.6, which

slightly favors importance sampling. It can be qualitatively seen that the distribution matches

the desired equilibrium distribution reasonably well. The second sample with β = 0.01 strongly

favors the local Markov chain update. As can be seen in the time series plot, the Markov chain

performs a random walk in a small area and tends to stay within one of the peaks, interrupted

by few jumps due to the global update. This leads to some, especially small peaks, to be ignored

and others receiving a too large weight. The χ2/dof values for the two distributions in fig. 3.2

are 6.895 (β = 0.6) and 93.302 (β = 0.01), confirming the difference in sampling quality.

3.4.2. Adaptive Selection of the Proposal Distribution Width

If the MC3 method is used with a fixed local proposal distribution (e.g. Gaussian), the width

of this distribution must be chosen. The acceptance rate should be in the range of [0.25, 0.5] in

order to obtain reasonable performance of the local update [1], which can be used as a measure

for adequate proposal widths.

The stochastic optimization method with vanishing adaptation algorithm introduced in [14] can

be used to iteratively update the covariance of the proposal distribution in a way that a given

measure (here the acceptance rate) converges to a desired value α. Given the measure rt for a

certain iteration step t, define

Ht = α− rt. (3.11)

If the parameter l that is to be optimized is updated according to

lt+1 = lt − cHtt
−κ, (3.12)
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Figure 3.2.: MC3 sampling results using an imperfect step function approximation as pIS, uni-
form local sampling within a range 0.01 around the previous state, and the equi-
librium distribution of eq. (3.10). The proposal distribution pIS as well as the
normalized equilibrium distribution are shown on the top right. On the left are
the normalized histograms of 30 000 sample points for β = 0.6 (top) and β = 0.01
(bottom) together with the equilibrium distribution. The bottom right shows the
time series plot of the Markov Chain generated for β = 0.01.

for some proportionality c and parameter κ ∈ (0.5, 1], rt will converge to α [6]. To make the

resulting Metropolis sampler stationary, the actual sampling may be preceded by a burn-in

phase, in which the adaptation is done and all generated samples are discarded. For the actual

sample generation the proposal distribution would be fixed.

Fig. 3.3 shows the acceptance rate and width of a Gaussian proposal distribution in the adapta-

tion process (corresponding to a burn-in phase) for a Camel target distribution (eq. (2.10) and

(2.11)). The adaptation for the larger value of κ = 0.9 is significantly faster, and it is visible the

burn-in phase could be terminated after 2000 steps as the acceptance rate no longer changes

(within the acceptable range). The final value of the width for the κ = 0.9 run is

σlocal = 0.504. (3.13)

3.4.3. Sampling the Camel Distribution

The Camel distribution introduced in section 2.3.1 will serve as a target distribution to evaluate

and compare sampling efficiency of the various methods. To know if using more advanced

Hamiltonian methods (section 4.1) within the MC3 framework leads to improvements compared

to the basic MC3 version, first the basic version must be analyzed. The Camel distribution

is chosen as example because it is known analytically (including its gradient) and for any

number of dimensions, while being complex enough to demonstrate properties of the different
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Figure 3.3.: Adaptation process according to eq. (3.12) for the width of a local Gaussian
proposal distribution for a Camel as target distribution. On the left it is κ = 0.9,
on the right κ = 0.51. The target acceptance rate is 0.3, and the proportionality
factor c = 0.5 was used.

sampling methods. The two peaks of the Camel distribution are spatially separated which

makes the distribution difficult for local Metropolis samplers, and (using the default parameters)

sufficiently narrow to make methods such as acceptance-rejection (section 3.1) inefficient.

Using a two-dimensional Camel distribution as target, the variance of a local Gaussian proposal

distribution, in analogy to the analysis in section 3.4.2, for an acceptance rate of 0.3, can be

found to be approximately

σ2
local = 0.0208. (3.14)

Generally, the width of the Gaussian distribution used as proposal here is described using a

covariance matrix. Since the algorithm presented in eq. (3.12) is limited to adapting the

overall size of the covariance matrix, it is here simply represented as the scalar variance (the

corresponding covariance matrix is σ21). The results for the basic MC3 algorithm, together

with other sampling methods, can be seen in fig. 4.4.
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4.1. Hamiltonian Monte Carlo

The performance of a Metropolis sampler is maximized if subsequent states are as uncorrelated,

and the acceptance rate is as high as possible. For a Metropolis update with a fixed local pro-

posal distribution, reducing the proposal width increases the acceptance rate but also increases

the random-walk behavior and thus the lag-autocorrelation. Hamiltonian Monte Carlo (HMC),

originally introduced as hybrid Monte Carlo [8], uses local information about the distribution

to decrease the random-walk behavior while significantly increasing the acceptance rate.

In analogy to statistical mechanics the potential to the probability distribution function f is

defined as V (x) = − log f(x) (note that classical mechanics is invariant under shifting the

potential by an additive constant, and the Metropolis algorithm is only sensitive to probability

ratios, thus f does not have to be normalized). Using a Hamiltonian of the form

H(x, π) = V (x) +K(π), (4.1)

an artificial momentum variable π (of the same dimension as x) is introduced with K such that

the distribution p(π) = e−K(π) is is Gaussian [5]:

K(π) =
1

2
πTM−1π. (4.2)

The covariance matrix M corresponds to a mass and can be any symmetric, positive-definite

matrix (in the following applications it is always taken to be a scalar multiple of the identity

and mass refers to a scalar value). The dynamics of the system is given by Hamilton’s equations

dxi
dt

=
∂H

∂πi
=
∂K(π)

∂πi
,

dπi
dt

= −∂H
∂xi

=
∂V (x)

∂xi
. (4.3)

In Hamiltonian dynamics, the value of the Hamiltonian H(x, π) remains constant as the system

evolves over time, preserving the total probability

p(x, π) = e−(− log f(x))e−K(π) = e−H(x,π). (4.4)

This would theoretically lead to a perfect acceptance rate, however numerical mistakes (and

possibly an inexact potential gradient) reduce this number.

20



4.1. Hamiltonian Monte Carlo

In practice, a discretization of the Hamiltonian equation must be chosen to simulate the dy-

namics, introducing the number of simulation steps and the step size as parameters (such that

the simulation would correspond to a propagation by steps · step size in time). The Hamilton

dynamics itself is volume preserving, such that the Metropolis acceptance probability does not

have to take volume change into account. It is important to choose a simulation method pre-

serving this property, in addition to ensuring time reversibility required for detailed balance of

the Metropolis update. A common choice satisfying these conditions [5], and the one used for

the implementation here, is a version of the leapfrog algorithm.

1 de f kin (p , M) :

2 # p o t e n t i a l cor re spond ing to a Gaussian d i s t r i b u t i o n , −l og ( pdf )

3 re turn piM
−1
ik pk / 2 # sum over i and k

4

5 de f k i n g r a d i e n t (p , M) :

6 # grad i ent o f kin

7 re turn M−1
ik pk # sum over k

8

9 de f l e a p f r o g (q , p , pot grad i ent , M, steps , s t e p s i z e ) :

10 q , p = copy ( q ) , copy (p) # don ’ t o v e r r i d e input v a r i a b l e s

11

12 f o r i in range ( s t ep s ) :

13 p −= s t e p s i z e /2 ∗ pot g rad i en t ( q )

14 q += s t e p s i z e ∗ k i n g r a d i e n t ( p next , M)

15 p −= s t e p s i z e /2 ∗ pot g rad i en t ( q )

16 re turn q , p

17

18 de f n e x t s t a t e (q , pdf , pot grad i ent , M, steps , s t e p s i z e ) :

19 # generate the next s t a t e in the Markov chain

20

21 # Gibbs update o f the momentum v a r i a b l e ( sample known d i s t r i b u t i o n )

22 p = gauss ian . rvs ( q . s i z e , cov=M)

23

24 # Hamiltonian ( Metropo l i s ) update

25 q next , p next = l e a p f r o g (q , p , pot grad i ent , M, steps , s t e p s i z e )

26 accept = pdf ( q next ) ∗ gauss ian . pdf ( p next , M) / ( pdf ( q ) ∗ gauss ian . pdf (p , M) )

27 i f random ( ) < accept :

28 re turn q next # accept q next with the p r o b a b i l i t y ’ accept ’

29 re turn q

Algorithm 4.1: Python pseudo-code for a Hamiltonian Metropolis update (next state). The

variables pdf and pot gradient refer to f(x) and ∂V (x)/∂x of the target

distribution, the momentum π is referred to as p.

The Hamiltonian update together with the leapfrog method is described in Python pseudo-code

in alg. 4.1. Sampled from its target distribution (Gibbs update), the momentum π together with

the previous state x of the Markov chain is propagated using the leapfrog algorithm to obtain
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a proposal. The final x value is accepted with the Metropolis acceptance probability given by

the ratio of the combined probability of x and π, compensating for inexact time evolution (due

to numerical errors or an approximate gradient). The HMC update defined in this way fulfills

detailed balance and is ergodic (for most parameter choices, see the discussion in section 4.1.2)

[5]. In addition to the target distribution f , the algorithm requires, at least in numerical form,

an expression for the gradient of the potential V (x) = − log f(x).

4.1.1. Challenges

Potential Gradient. Besides the target distribution f , the simulation of the Hamilton dynamics

requires the gradient of the potential V (x) = − log f(x). For applications in high energy physics,

the function f is only numerically available and the potential gradient cannot be analytically

derived. A naive approach would be to obtain the gradient by evaluating f and computing the

differences of the logarithm of these values. Assuming the (phase-) space of x is K dimensional,

f needs to be evaluated at least K additional times (once for a step in the direction of each

dimension). Each step in the leapfrog algorithm requires two evaluations of the gradient, thus

making the minimal number of function calls needed for a sample of size N

NHMC
f = N + 2N ·K · steps. (4.5)

The number of steps is often chosen larger than 10 and the dimensionality is generally high,

making HMC (using this construction for the gradient) multiple orders of magnitude more

expensive than a Metropolis update with fixed proposal distribution. Since the objective is to

minimize calls to f , other methods such as the extreme learning machine introduced in section

4.3 should be considered to obtain an approximation of the potential gradient.

Parameter Space. Another complication introduced by HMC is the presence of two additional

parameters, the step size and the number of steps for the leapfrog simulation (the mass is

commonly fixed, see section 4.1.2). If used in combination with the MC3 algorithm, three

parameters need to be explored for an optimal/acceptable configuration (see sections 4.1.3 and

4.2.1). Especially for applications where Monte Carlo methods are used in the background,

there has to be an automated algorithm to choose at least a subset of these parameters. The

No-U-Turn sampler introduced in [6] chooses the number of simulation steps for each proposal

dynamically, maximizing the distance of adjacent states by continuing the simulation as long

as the motion moves away from the starting position. Additionally a method based on the dual

averaging method of [15] is suggested to automatically tune the step size, eliminating the need

to manually choose any parameters introduced by HMC.

Zero-Probability Areas. Using HMC in combination with a probability distribution with ex-

tended areas of zero probability can be problematic, since generally the potential would be

infinite and the gradient not well defined. A special case of this is a boundary constraint, which
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can be resolved by reflecting at the borders or using a mapping such as Spherical HMC as

introduced in [9].

The situation is slightly different if the gradient was learned computationally (section 4.3). If the

target distribution is localized by peaks decreasing continuously to zero, the HMC dynamics will

(for well-tuned parameters) never or rarely move into problematic areas. Boundary constrained

targets do pose a challenge in the sense that the learned gradient may push the Hamiltonian

dynamics into zero probability regions leading to low acceptance rates (section 5.2), and the

solutions mentioned above should be applied.

4.1.2. Parameter Choice

For an overview of the impact of the various parameter choices introduced by HMC, in the

following a two-dimensional Gaussian distribution with mean µ = (1/3, 1/3)ᵀ and variance

σ2 = 0.005 (i.e. with covariance matrix σ212×2) is considered as target distribution (this

choice corresponds exactly to one of the peaks in the Camel distribution used in sections 4.1.3

and 4.2.1). The potential and potential gradient for the Gaussian distribution are analytically

known (see kin gradient in alg. 4.1). For this target distribution, the solutions of the Hamilton

dynamics are ellipses. It is important to note that the Gaussian is a localized distribution that

quickly and continuously approaches zero away from the center such that no border phenomena

have to be considered.

Fig. 4.1 shows the measures introduced in 3.3 of samples generated using HMC for different

masses and number of simulation steps choices over a range of step sizes. A periodic behavior,

due to the symmetry of the target distribution (the HMC dynamics is elliptical), is observable.

For small step sizes, the update only proposes states in the vicinity of each other leading to

large χ2, small p(χ2) and small ESS values. By increasing the step sizes the ESS increases to its

maximal value, until it drops again at a point where the ellipses of the motion close, making the

Markov chain stay close to a given starting point. This behavior is further illustrated in fig. 4.2,

which shows the trajectories arising from the HMC algorithm corresponding to configurations

7 and 8 in fig. 4.1. Both figures seem to suggest choosing a different mass corresponds to

re-scaling the behavior over the step size range, as no new features are apparent. A closer

inspection of the algorithm defined in alg. 4.1 indeed confirms that a linear scaling of the mass

(covariance matrix) M by a factor C (leading to a scaling in the momentum variable by
√
C) is

just compensated by scaling the step size by a factor
√
C. This behavior can also be numerically

confirmed by comparing or re-scaling the plots in fig. 4.1.

Based on this observation, the mass of HMC can generally be fixed, reducing the parameters

to the step size and step count (in the following sections it will be M = 1). If all degrees of

freedom of the mass matrix are considered, this observation only applies to the overall scale and

the relative scale of the different dimensions may still be optimized. A similar scaling behavior

is observable for the step count with respect to the step size, but because the simulation method

is inexact, and numerical errors occur, neither can be set to a fixed value without potentially
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4. Informed Sampling Methods

loosing relevant ranges. While configurations 1 and 8 (or 5 and 10) in fig. 4.1 show the same

range and scale of qualitative behavior for χ2 and ESS (corresponding to analogous trajectories),

the configuration with fewer number of steps show significant deviations of the acceptance rate

from 100 %. This corresponds to simulation errors in the leapfrog simulation which increase for

larger step sizes. Following the trend apparent from configuration 1, an exemplary HMC run

with mass 0.1, 10 steps, and a step size of 0.06 for 1000 samples led to an acceptance rate of 0.0.

The same (analytical) Hamiltonian dynamics for a total time steps · step size = 0.6 is simulated

in configuration 5 with a step size of 0.015 and 40, where the acceptance rate is close to 100 %

and both the χ2 and ESS measures indicate successful sampling.

While this artificial problem illustrates general features and relations of the HMC parameters,

it is not possible to extract a general choice for the step size (range) or the number of steps

(e.g. the periodicity observed in fig. 4.1 only emerges for distributions with periodic solutions

to the associated Hamiltonian dynamics). The Camel distribution examined in the following

section, however, is equivalent to two spatially separated Gaussian distributions with the same

variance as the one considered here. Following from this discussion, it is therefore reasonable

to limit the parameter space to one configuration; corresponding to configuration 7 in fig. 4.1,

a mass of 1, 40 simulation steps, and the range [0, 0.01] of step sizes will be used.

4.1.3. Sampling the Camel distribution

For a slightly more realistic example, and to understand the limitations of the HMC method,

the Camel distribution introduced in section 2.3.1 is considered. Figure 4.3 shows the ESS, the

χ2 (and corresponding p-) values, and the acceptance rate of samples generated using HMC

for a single Gaussian distribution and a Camel distribution (with the default parameters from

section 2.3.1; the Gaussian corresponds to one of the peaks). The parameters of the HMC

update are40 simulation steps and the range [0, 0.01] of step sizes, in dependence of which the

quality measures are shown (based on results from the previous section, this choice of parameters

is sufficient to explore the sampling of the Gaussian distribution). For the two distributions

a similar qualitative behavior is observable, as the areas of larger p-values overlap, and the

high-χ2 middle section (corresponding to periodic ellipses) are visible and align in both plots.

However, the ESS as well as the χ2 p-values are generally smaller for the Camel distribution

compared to the single Gaussian distribution, which is due to the significant spatial separation

of the two peaks that makes it unlikely for the Hamiltonian dynamics to move from one peak

to the other. The plot for the Camel distribution is not symmetric like the one for a Gaussian

distribution; the ESS increases for larger step sizes, beyond the point where it drops for a

Gaussian distribution, and the p-values seem to be larger for larger step sizes. This corresponds

to a larger likelihood of the HMC dynamics to cross over to the other peak.

By considering larger values for the step size, and carefully observing the increased numerical

error, one may be able to further optimize the HMC algorithm to sample the Camel distribution.

This would, however, lead off-topic as the Camel is only an artificial toy problem used here to
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Figure 4.1.: Sampling results of HMC using various parameter choices for a Gaussian target
distribution with µ = 1/3 and σ2 = 0.005. Each plot shows the acceptance rate of
the HMC update, the ESS, the logarithm of the χ2 value (on a linear scale large χ2

values would obscure the qualitative behavior), and the corresponding p-value for
a certain choice of mass and number of simulation steps, over a range of step sizes.
The χ2 values are obtained using 20 equally spaced bins over each dimension.

illustrate how combining MC3 with advanced local samplers can mitigate individual weaknesses

of a global Metropolis-Hasting sampler and a local sampler.

4.2. Multi-Channel Markov Chain Monte Carlo with Hamiltonian

Local Update

Having introduced all basic sampling methods, the advantage of using an informed sampling

method (HMC) as local update in MC3 (HMC-MC3) can now be analyzed. Varying the β-

parameter of MC3 is equivalent to changing the dominance of the local update relative to the

global update, with β = 1 corresponding to only using the global update. Varying the parameter

β close to 1 can therefore be interpreted as analyzing the performance improvements on a global

update by introducing the additional local update. Since the local update alone (in the case

of HMC) was already seen to be sub-optimal for distributions with multiple distinct peaks, the

mixing can also be seen as improving on the local update which dominates for β close to 0. In

summary the sample quality must be analyzed for β ∈ [0, 1], where values close to the extremes
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Figure 4.2.: Trajectories of an HMC update with a Gaussian target distribution (µ = (1/3, 1/3)ᵀ

and σ2 = 0.12/2), for masses of 1 (top row) and 2 (bottom row), and 40 simulation
steps.

correspond to only using the local or global update, respectively.

4.2.1. Comparing Performance Improvements on the Camel Distribution

Following the previous examples, fig. 4.4 shows the sampling results for a two-dimensional

Camel target distribution (with default parameters, eq. (2.11)) over the range of possible

values for β. All data points are obtained as the average over 20 runs of the methods.

Three different global importance sampling distributions pIS for the MC3 are considered. The

first distribution is a perfect mapping, being exactly the target distribution. This corresponds

to a multi-channel configuration using as channels two Gaussian distributions at the centers

with equal weights. The second multi-channel configuration for the imperfect mapping uses

as channels the two Gaussian distributions with parameters from the importance sampling

example in eq. (2.14). The final distribution pimp in this case is obtained by executing the

adaptive multi-channel Monte Carlo algorithm from section 2.4 for 1000 integration steps. This

importance distribution most resembles a realistic sampling problem using e.g. the Sarge [16]

algorithm as phase space mapping, with limited information about the exact peak locations

and shapes. In addition puniform, a uniform distribution over the whole volume is used, which

loosely corresponds to a RAMBO [17] phase space mapping and no information about the target

distribution (see section 5.1).

As expected, the global Metropolis-Hasting sampler using the perfect mapping, showing as a

straight line as it has no dependence on β, performs best and serves as reference for the optimal

performance (the sample points are proposed directly according to the target distribution). The
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Figure 4.3.: ESS, χ2 value, corresponding p-value, and acceptance rate measuring the sample
quality of HMC on a Gaussian (top) and a Camel (bottom) distribution (both two-
dimensional) as target, for a mass 1 and 40 simulation steps, over a range of step
sizes. The Gaussian distribution has parameters µ = (1/3, 1/3)ᵀ and σ2 = 0.12/2,
for the Camel distribution the default values from eq. (2.11) are used. Each data
point is the mean over 20 runs of the HMC sampler, the variance is shown for the
ESS and the χ2 p-value.

global Metropolis-Hasting sampler for the imperfect mapping (again showing as straight line)

performs significantly worse but notably maintains a high ESS. This result corresponds with

the currently established method to generate phase space events, and must be improved upon.

The basic MC3 method with a local Gaussian distribution and an optimal variance of eq. 3.14

corresponds to the method introduced in [1]. The consistently decreasing χ2 value relative to

β implies the local update is (for this example) worse than using the an update with the global

imperfect mapping on its own, and using the basic MC3 algorithm leads to no improvement

(for more and narrower peaks in the target distribution this will likely differ).

The two HMC-MC3 configurations with step sizes 0.003 and 0.008 (chosen according to the

analysis in sections 4.1.2 and 4.1.3) seem to perform equally, which indicates the likelihood of

HMC crossing the gap between the peaks in the Camel distribution becomes irrelevant when

using MC3. For small values of β this method corresponds to just using HMC. By increasing

β, both the χ2 value and the ESS are improved. While there seems to be an optimal value for

β regarding the sample’s conformity with the target distribution (minimal χ2), the ESS rises

monotonically (the importance sampling update produces uncorrelated points). The minimum

in the χ2 plot can be understood as a compromise between using the HMC update, better

suited to sample a Gaussian distribution, and the global importance sampling update, worse at

sampling the Gaussian peaks but able to “jump” between them. In practice, a balance between

producing an optimal ESS and χ2 value, informed by the actual time efficiency of either and the
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4. Informed Sampling Methods

desired sample quality must be found. For a realistic (instead of the proof of concept Python

implementation done and used here) the ratio of the ESS and the computation time may be

used as a measure.

A similar behavior for the ESS and χ2 is visible for the HMC-MC3 method using a uniform

importance sampling distribution. However, the optimal χ2 value as well as the corresponding

p-value are considerably worse then the result obtained using pIS = pimp. The ESS increases

for larger values of β but reaches a significantly smaller maximum, which is the value that

would be obtained using only the global Metropolis-Hasting sampler with uniform proposal.

The worse performance directly corresponds with less information being available about the

target distribution.
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Figure 4.4.: Sampling results of a two-dimensional Camel distribution using the MC3 algo-
rithm in various configurations. The plots show the χ2 (left), p-value (middle)
and ESS (right) over β ∈ [0, 1] for various configurations of MC3, as well as global
Metropolis-Hasting updates with perfect (target distribution) and imperfect (Camel
distribution according to eq. (2.14)) proposals. The first two MC3 configurations
use the imperfect mapping as importance distribution pIS and HMC as local update
with step sizes 0.003 and 0.008. The third configuration uses HMC with step size
0.003 and a uniform distribution as pIS. Finally, the basic MC3 configuration using
a local Gaussian proposal with optimal variance (eq. (3.14)) is displayed. The χ2

values are obtained using 20 equally spaced bins over each dimension.

4.3. Extreme Learning Surrogate for the Potential Gradient

The HMC method in section 4.1 relies on the potential gradient of the target distribution.

Neither the potential V (x) = log f(x) for a target distribution f , nor its gradient ∇V (x) are

analytically known for applications in high energy particle physics. The function f is expensive

to evaluate which makes a surrogate for the potential gradient desirable. The approach chosen

here is to computationally learn the potential

V (x) = − log f(x) ≈ z(x), (4.6)
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4.3. Extreme Learning Surrogate for the Potential Gradient

in a way that a numerical expression for the gradient of z is immediately known and

∇V (x) ≈ ∇z(x). (4.7)

The extreme learning machine (ELM) proposed in [18] can be used to find the optimal weights

in a single-hidden layer feedforward neural network. The variant considered here is for one-

dimensional output, and based on radial basis functions (specifically Gaussian) such that the

final output function for an input value xj (generally denoting a point in K-dimensional space)

is

z(xj) =
Z∑
i=1

viai(x
j ; ci, wi) =

Z∑
i=1

viai

(
−
∥∥xj − ci∥∥

2(wi)2

)
. (4.8)

The number of nodes is Z and each node i corresponds to a radial basis function ai with a bias

ci and a width wi. Each node may generally have a different output function ai, but for the

implementation and application here, all are set to be Gaussian: ai(y) = a(y) = exp y. Then,

the gradient of the surrogate z is immediately given by

∂z(x)

∂xk
=

Z∑
i

vi

(
−
xk − cik
(wi)2

)
a(xj ; ci, wi). (4.9)

The parameters wi and ci are chosen randomly in the initialization of the optimization process

(the ranges and distributions for the parameters must be chosen for the specific input space).

The output matrix H for a set of input values xj is defined as

Hij = a(xj ; ci, wi), (4.10)

such that the output using a certain weight vector v (which is to be optimized) is

zj =
Z∑
i

Hijvi, z = Hv. (4.11)

The training problem is defined by a set of data xj with known output T = (f(x1), . . . , f(xt))

such that Hv = T . If the number of training data t is smaller or equal the number of nodes Z,

the problem can be exactly solved for almost all parameter values [18]. Generally it will be Z < t

and H is not invertible. The optimal output weight vector is chosen using the pseudo inverse Hᵀ

(Moore-Penrose generalized inverse), which minimizes the root-mean-square differences between

the learned outputs Hv and the training set T .

Fig. 4.5 gives a qualitative comparison of the optimization results for an ELM using 500

Gaussian nodes as described above, approximating the potential for a Camel distribution (eq.

(2.10), the exact gradient is given in eq. (2.12)). The root-mean-square differences to the

surrogate (using 100 000 uniformly spaced test points) for the potential is 0.0509, and for the
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gradient 82.7. While this confirms the overall functionality of the method, fig. 4.6 shows the

root-mean-square differences (RMS) of the surrogate to the actual Camel distribution (computed

using other points than the training data) over different number of training points. A convergent

behavior is visible, the RMS decreases as expected with more training points used until leveling

off, which corresponds to the best possible configuration (given the network of basis functions)

being reached. The RMS is notably higher for the gradient, which is to be expected as the ELM

optimizes the network to match the potential.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
surrogate gradient

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
surrogate potential

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
gradient

100

75

50

25

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
potential

0

10

20

30

40

50

Figure 4.5.: Qualitative comparison of the potential and potential gradient of the Camel dis-
tribution (eq. (2.10), (2.11)) with the ELM surrogates. The ELM uses 100 or 500
Gaussian nodes with widths in [0.001, 0.5] and centers in [0, 1]2, and was trained
with 100 000 points randomly chosen within the volume.
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Figure 4.6.: Average root-mean-square of differences to the exact function (using 100 000 uni-
formly spaced points as test) for 20 training runs (and the correspondingly obtained
variance) using the ELM to obtain the potential to the Camel distribution (eq.
(2.10), (2.11)).

The reason for learning the potential and implicitly obtaining the gradient is that training data

for the potential can easily be obtained. The method of an ELM can be applied within the

MC3 framework without any additionally needed function evaluations, if the function values

used in the integration phase can be reused. The computation cost of the ELM is dominated

by obtaining the pseudo inverse of the output matrix.

Especially when using the ELM in combination with HMC, distributions with significant areas

of zero probability may lead to problems as there are training points in those regions (the

logarithm goes to infinity for values going to zero). If the distribution continuously approaches

zero, the potential would be learned to go to infinity and the resulting HMC dynamics would

usually be contained in the sensible areas. If the distribution, however (e.g. due to border
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4.3. Extreme Learning Surrogate for the Potential Gradient

conditions) instantaneously drops to zero, the lack of data means the ELM surrogate may

assume any behavior which may make HMC inefficient (see section 5.2). It is important to note

that a bad surrogate only leads to bad sampling performance but does not impact the correct

limit distribution of HMC. The issue of borders, as mentioned in section 4.1.1 can be addressed

by using e.g. Spherical HMC [9].

4.3.1. No-U-Turn Sampler

The main issue of HMC-MC3 is the large number of parameters that must be tuned with respect

to the given target distribution. The No-U-Turn sampler introduced in [6] is an adaptive variant

of the HMC algorithm which tunes the step width using a dual averaging scheme [15] and chooses

an optimal number of steps for each proposal. While a detailed description of the sampler is

beyond the scope of this introduction, the basic concept may be outlined.

The advantage of HMC methods is that far-away states are proposed with close to perfect

acceptance rate, reducing the random-walk behaviour and lag-autocorrelation compared to a

basic local Metropolis-Hasting algorithm. Based on this, the No-U-Turn sampler chooses the

step width for each proposal such that the proposed state is as far as possible from the initial

state. This is done by simulating the trajectory (in both directions to maintain reversibility

and detailed balance) up to a point where the next step would have a backward component in

the direction between initial and that point.

The basic algorithm is, however, problematic if applied to the Camel distribution considered in

the previous sections. The basic structure of either peak is Gaussian, for which the Hamiltonian

trajectories are ellipses. Based on the outline of the algorithm, the number of steps would

always be selected such that the trajectories stop at a half turn (or an integer multiple plus

a half turn) of the ellipsis. This trajectory, corresponding to the second plot in fig. 4.2,

leads to arbitrarily slow convergence, as was seen section 4.1.2. Running an implementation

of the No-U-Turn sampler1 confirms this behavior. Even if this kind of “bad” convergence

could be mitigated, running the No-U-Turn sampler on the Camel distribution, used here as an

artificial toy problem, would not lead to further insights as the previous analysis corresponds to

a manual optimization. While the No-U-Turn sampler leads to no further insight for the Camel

distribution, the sampling result for the physical example considered in section 5.2 serves as

indication that it can generally be used to eliminate the need for manual tuning.

1implemented by Timo Janßen
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5. Sampling Physical Distributions over Phase

Space

In the previous sections, Monte Carlo sampling and integration methods were discussed generally

and analyzed using an artificial probability distribution. The developed methods, specifically

HMC and MC3, will now be applied to a real physical process.

For n final state particle, the phase space is naively 4n-dimensional (one four-momentum for

each particle). Based on this alone, the sampling method would have to use Rn as sample

space. However, due to the on-shell condition for the final state particles and four-momentum

conservation, the sample space can be greatly confined ( f = 0 for areas where these constraints

are not satisfied) and the dimension can be reduced to 3n − 4. For the Monte Carlo methods

it is vital to use the mapping with reduced number of dimensions since trying to sample from

a manifold within a higher dimensional hyper-cube would fail (without building the constraint

of the manifold into the sampling method, the likelihood of randomly choosing a point with

non-zero probability is zero). Note that the manifold is associated with a δ-distribution such

that the integration over Rn-phase space is non-zero.

To obtain the differential cross section f the Python interface of the Sherpa [10] framework is

used. The configuration files used in the following are available together with the rest of the

Python source code used here1.

5.1. RAMBO Phase Space Mapping

The RAMBO-algorithm introduced in [17] maps values from the hyper-cube [0, 1]4n to physical

four-momenta with a fixed center of mass energy [3]. The approach is to first consider the

phase space of n massless four-momenta, not constrained by momentum conservation and then

Lorentz boost and re-scale them into physical four-momenta. The algorithm for the center of

mass energy P , which will not be further derived here, consists of two steps as described in [3]

and included here for completeness:

1. n massless four-momenta qµi are generated independently with isotropic angular distribu-

1https://github.com/mathisgerdes/hep-monte-carlo/releases/tag/v1.1
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5.2. Electron-Positron Annihilation to Quark-Antiquark Pair

tion the energy component q0
i according to the density p(q0

i ) = e−q
0
i dq0

i . For ui ∈ [0, 1]4:

ci = 2u1
i − 1, φi = 2πu2

i , q0
i = − log (u3

iu
4
i )

qxi = q0
i

√
1− c2

i cosφi, qyi = q0
i

√
1− c2

i sinφi, qzi = q0
i ci. (5.1)

2. The qµi are Lorentz and scaling transformed:

p0
i = x

(
γq0

i +~b · ~qi
)
, ~pi = x

(
~qi +~bq0

i + a
(
~b · ~qi

)
~b

)
, (5.2)

using the variables

Qµ = Σn
i=1q

µ
i , M =

√
Q2, ~b = − 1

M
~Q, (5.3)

γ =
Q0

M
=

√
1 +~b2, a =

1

1 + γ
, x =

√
P 2

M
. (5.4)

Points generated this way have an associate weight (corresponding to a uniform probability

density for the four-momenta) of

w0 = (2π)4−3n

(
π

2

)n−1 (P 2)n−2

Γ(n)Γ(n− 1)
. (5.5)

5.2. Electron-Positron Annihilation to Quark-Antiquark Pair

Fig. 5.1 shows the differential cross section of e+e− → qq̄ obtained via Sherpa and using

RAMBO on diet as mapping (such that it can be displayed in two dimensions). The center of

mass energy used is P = 100 GeV. For the integration and sampling, the distribution/integrand

f will refer to the differential cross section composed with the RAMBO on diet mapping so that

f : [0, 1]2 → R≥0. The probability distribution only varies in one dimension, which indicates

the probability is only dependent on one out of the two degrees of freedom. This corresponds

to the process being independent of the azimuthal angle φ of the spherical coordinate angles φ

and θ describing a 2→ 2 scattering.

In the first step, the differential cross section is integrated using importance sampling and

RAMBO on diet as mapping (including the corresponding weight as probability density). For

100 000 integration steps, the result for the total cross section is

206.6± 0.3 pb, (5.6)

which is consistent with the result obtained by Sherpa (using Rambo).

Since the distribution is relatively flat, a simple Metropolis sampler with the RAMBO on diet

mapping as proposal can be used to generate events. An exemplary run of 10 000 sample points
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gives an acceptance rate of 78 % and

χ2 = 1.56, p(χ2) = 0.00015, ESS = 5 595. (5.7)

To obtain a reasonable χ2 value, the binning was done over the [0, 1]2 hyper-cube, using the

same mapping as for the sampling. In the following sample analyses, the binning is fixed to 20

bins in each dimension. The variance and mean of the distribution, needed for the ESS, was

obtained from a similar Metropolis sample of 100 000 events.

In order to test HMC methods on this distribution, first an expression for the potential gradient

must be obtained. This is done using the ELM, for which a total RMS error for the potential

reaches 0.00038 using 50 nodes and a training set of size 1000. A trajectory generated by an

HMC run using this potential gradient is visible in fig. 5.1. It is clearly visible that, since

the HMC algorithm does not have the border constraint of the unit hyper-cube built-in, and

the potential may assume any behavior in regions it is not trained on, the performance of a

pure HMC sampler will suffer from simulations moving out of the [0, 1]2 area. An exemplary

run using the same parameters as for the shown trajectory (mass 1, step size of 0.01 and 40

simulation steps) gives an acceptance rate of 36 % and

χ2 = 5.44, p(χ2) = 1× 10−61, ESS = 923. (5.8)

This is significantly worse than the uninformed, global Metropolis sampler because the HMC

dynamics frequently moves out of the unit hyper-cube, whereas the previously used Metropolis

sampler only proposes states within the hyper-cube.

In order to effectively use HMC for distributions that instantaneously drop to zero due to border

constraints, Spherical HMC can be used [9]. Instead of simulating the Hamiltonian dynamics

directly on the unit hyper-cube, the space is mapped onto a higher dimensional sphere. Using

this method2 with the same parameters as before, an acceptance rate of 99.97 % is reached with

χ2 = 2.77, p(χ2) = 5× 10−20, ESS = 10 000, (5.9)

which is a significant improvement over the basic HMC method. The method was not optimized

for the parameters of the step size and step width and better performance (especially regarding

faster converges) may be achievable. When using the spherical mapping, it was observed that

for large step sizes points close to the edges were unlikely to be sampled. This may be due

to a relative stretching between the sample space (the hyper-cube) and the sphere, which is

especially important for the distribution used here with significant areas of high probability

close to the edges, or an unexpected behavior of the resulting Hamiltonian dynamics.

A proof of concept run of a No-U-Turn sampler including the Spherical HMC mapping2 leads

2implemented by Timo Janßen
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5.2. Electron-Positron Annihilation to Quark-Antiquark Pair

to an acceptance rate of 92% and

χ2 = 4.67, p(χ2) = 4× 10−48, ESS = 10 000. (5.10)

While this indicates the implementation is functional, the performance seems worse than for

the basic Spherical HMC. A qualitative inspection of a scatter plot shows notably few sample

points close to the edges. This leads to believe the step size may be optimized to a value where

the spherical mapping impairs the dynamics as was suspected earlier. Further analysis of the

algorithm as well as the sampling results is needed to verify this hypothesis.
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Figure 5.1.: Normalized differential cross section (right) for the process e+e− → qq̄, obtained
via Sherpa and displayed here using the RAMBO on diet mapping. The HMC
generated trajectories (middle) are obtained for a step size of 0.01, a mass of 1 and
40 simulation steps; the required potential gradient was obtained using the ELM
with Gaussian radial basis functions. The right plot shows the sample distribution
obtained using Spherical HMC and 10 000 sample points.
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6. Summary of Results

The analysis of HMC-MC3, in comparison to the basic MC3 method and a global Metropolis

Hasting sampler, shows a potentially significant increase in sampling efficiency for sufficiently

complex distributions. The performance improvement depends, however, on the tuning of at

least the β-parameter and relies on a numerical approximation of the potential gradient. Using

an ELM surrogate for the potential gradient proves functional for the analyzed distributions.

The ESS and the χ2 value are generally optimized for different values of β and a compromise

must be made, based on the distribution specific quality of the global and local updates. For a

“production” implementation, the efficiency of the HMC-MC3 configuration can be measured

using the ratio of the ESS and the needed computational time (including the optimization phase

for the surrogate). This makes the method comparable to basic Metropolis-Hasting updates,

taking into account additional costs due to HMC simulations. An analytical derivation of the

computational cost (using the number of function evaluations) cannot be sensibly made, since

the surrogate can be learned without additional function evaluations and, using the surrogate,

the simulation of the Hamiltonian dynamics also does not need to evaluate the target distri-

bution. This makes the HMC method, in terms of function evaluations, equally expensive as

a simple Metropolis-Hasting update. Besides the efficiency of the chosen configuration (given

by the effective sample size produced per computation time), the χ2 value (and corresponding

p-value) must be taken into account to confirm the sampling method converges to the target

distribution reasonably well, within the desired number of sample points.

If the target distribution is relatively flat, as in section 5.2, the HMC dynamics close to the

edges of the sample space becomes relevant and must be carefully handled. Spherical HMC,

only shortly mentioned here, seems a promising resolution of this issue, but must be further

analyzed.

6.1. Outlook

One of the main drawbacks of the HMC-MC3 combination presented here is the high number of

parameters which must be chosen and tuned for individual distributions. While the β-parameter

must be chosen based on the mapping quality, the step size and number of steps used in the

HMC algorithm can be adaptively tuned using more advanced variants such as the No-U-Turn

sampler. While the implementation (not personally implemented) shortly tested in section 5.2

seems functional, further analysis is required to confirm an optimal configuration is reached and
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6.1. Outlook

explore possible drawbacks in performance. Specifically, the handling of border constraints must

be studied and the combination of the Spherical HMC mapping with the No-U-Turn sampler

must be validated.

RAMBO, used as physical phase-space mapping here, is fundamentally a single-channel method

and would, for differential cross sections with significant peaks, lead to slow sample convergence

(for all sampling methods and the integration phase). An alternative method is the Sarge

algorithm, introduced in [16].

While the ELM surrogate for the potential gradient proved sufficient here, it must, especially

regarding the computational cost, be further analyzed for more realistic problems. The main

bottleneck in obtaining the surrogate is the computation of the pseudo inverse of the output

matrix. This may be improved upon by using iterative optimization algorithms, which can also

be used to improve the weight vector using individual points (for example during an initial

burn-in phase of the MC3 sampler).
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A. Choice and Estimator for the Bin Width

The computation of the χ2 value relies on a binning of the sample space. Theoretically, the

binning can be arbitrarily chosen. The requirement of a minimal number of sample points

restrains how small the bin width can reasonably be. Furthermore, choosing the bin size too

large would miss features of the sample distribution.

In all practical applications here, the binning is chosen to be uniform in each dimension. While

there exist multiple estimators for a good bin width in one dimension, such as the Freedman

Diaconis Estimator [19]

h = 2 IQRN−1/3, (A.1)

where IQR is the interquartile range and N the number of sample points, estimators for more

than one dimensions are less common. Based on the proportionality to IQR, which increases

the bin width relative to the scale of the distribution, and the scaling N−1/(2+K) in the dimen-

sionality K [20], the estimator used here is

h = 2 IQRN−1/(2+K). (A.2)

For applications comparing the efficiency of multiple methods or various configuration, the

binning is fixed to a number based on this estimator. If no choice of binning is mentioned, the

result of this estimator is used for the bin width.

38



Bibliography
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